[1] Epstein, B. Truncated life-tests in the exponential case. The Annals of Mathematical Statistics 25.555-564(1954)
[2]Childs, A. Chandrasekhar, B. Balakrishnan, N. and Kundu, D. Exact likelihood inference based on type -I and type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55, 319–330 (2003)
[3]Balakrishnan, N. Kundu, D. Hybrid censoring: models, inferential results and applications. Computational Statistics & Data Analysis, vol. 57, no. 1, 166-209(2013)
[4] Gupta, P.K. Singh, B. Parameter estimation of Lindley distribution with hybrid censored data. International Journal of Systems Assurance Engineering and Management, 4(4), 378-385(2012)
[5] Sayyareh, A., Panahi, H. Model Selection Based on Tracking Interval Under Unified Hybrid Censored Samples. Journal of the Iranian Statistical Society, 17 (1), 1-31. Statistical Research of Iran, vol. 8, no. 2, 149-162 (2018)
[6] Habibi, R.A., Izanlo, M. An EM algorithm for estimating the parameter of the generalized exponential distribution under unified hybrid censored data. Journal of Statistical Research of Iran, vol. 8, no. 2, 149-162. (2011)
[7] Childs, A., Chandrasekar B., Balakrishnan, N. Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes. In: Vonta F, Nikulin M, Limnios N, Huber-Carol C (eds) Statistical models and methods for biomedical and technical systems. Birkh¨auser, 323-334. (2008)
[8] Chan, P., Ng, H., Su, F. Exact likelihood inference for the two-parameter exponential distribution under type II progressively hybrid censoring, 78, 747–770(2015)
[9] Kundu, D., Joarder, A. Analysis of type-II progressively hybrid censored data. Computational statistics & Data Analysis, 50, 2509-2528. (2006a)
[10] Hemmati, F., Khorram, E. Statistical analysis of the log-normal distribution under type II progressive hybrid censoring schemes. Communications in Statistics Simulation and Computation, 42, 52-75. (2013)
[11] Panahi, H. Estimation Methods for the Generalized Inverted Exponential Distribution Under Type II Progressively Hybrid Censoring with Application to Spreading of Micro-Drops Data. Communications in Mathematics and Statistics, 5, 159-174. (2017)
[12] Lee, k., Sun, H., Cho, Y. Exact liklihood inference of the exponential paramater under generalized type II progressive hybrid censoring. Journal of the Korean statistical society. 45: 123-136. (2016)
[13] Cho, Y., Sun, H. and Lee, K. Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme. Statistical Methodology, 23, 18-34.(2015)
[14] Gorny, J., Cramer, E. Exact likelihood inference for exponential distributions under generalized progressive hybrid censoring schemes. Statistical Methodology, 29, 70-94. (2016)
[15] Koley, A., Kundu, D. On generalized progressive hybrid censoring in presence of competing risks. Metrika, 80, 401-426. (2017)
[16] Mohie El-Din, M.M., Nagy, M., Abu-Moussa, M.H. Estimation and prediction for Gompertz distribution under the generalized progressive hybrid censored data. Annals of Data Science, 1-33. (2019)
[17] Gupta R.D., Kundu, D. Generalized exponential distributions, Aust. N. Z. J. Statist. 41(2), 173–188. (1999)
[18] Abouammoh, A.M. and Alshingiti, M.AReliability estimation of generalized inverted exponential distribution. Journal of statistical computation and simulation, 79, 1301-1315. . (2009)
[19] Krishna, H. and Kumar, K. Reliability estimation in generalized inverted exponential distribution with progressively type II censored sample. journal of statistical computation and simulation, 83, 1007-1019. (2013)
[20] Dey, S. and Dey, T. On progressively censored generalized inverted exponential distribution. Journal of Applied statistics, 41, 2557-2576. (2014)
[21] Samuel, B.R., Balamurali, S. and Aslam, M., Designing of repetitive group sampling plan undertruncated life test based on generalized inverted exponential distribution. journal of statistics and Management systems, 21, 955-970. (2018)
[22] Hassan, A.S., Marwa, A., and Nagy, H.F. Estimation of P (Y>X) using record values from the generalized inverted exponential distribution. Pakistan journal of statistics and operation Research, 14, 645-660. (2018)
[23] Ateya, S.f. Estimation under Inverse Weibull Distribution based on Balakrishnan’s Unified Hybrid Censored Scheme. Communications in Statistics Simulation and Computation, 46, 3645-3666. (2015)
[24] Kundu, D. and Pradhan, BBayesian inference and life testing plans for generalized exponential distribution. Science in China Series A: Mathematics, 52:1373-1388. (2009)
[25] Lindley, D.V. Approximate Bayesian methods (with discussions), Trabajos de Estadistica 31, 232–245. (1980)
[26] Varadhan, R., and Gilbert, P.D. (2009), BB: An R Package for Solving a Large System of Nonlinear Equations and for Optimizing a High-Dimensional Nonlinear Objective Function, J. Statistical Software, 32:4,
http://www.jstatsoft.org/v32/i04/.
[27] Von Alven, W. H. (ed.). Reliability Engineering by ARINC. Upper Saddle River, NJ, USA: Prentice. (1964)
[28] Delignette-Muller ML and Dutang C fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software, 64(4), 1-34. (2015)
[29] Kang, C.W., Ng, H.W. Splat morphology and spreading behavior due to oblique impact of droplets onto substrates in plasma spray coating process, Surface and Coatings Technology, 200, 5462-5477. 2006),
[30] اسدی، س.، پسندیده فرد، م.، مقیمان، م.، (1386). مطالعه برخورد مایل قطره با سطح جامد در فرآیند لایه نشانی پاششی با استفاده از شبیهسازی عددی و مدل تحلیلی، نشریه علمی و پژوهشی علوم و مهندسی سطح ایران، دوره 3، شماره 4.