Bootstrap Method and Common Set of Weights in Data Envelopment Analysis to Differentiate Efficient Units

Document Type : research paper

Authors

1 Department of Mathematics, Lahijan branch, Islamic Azad University, Lahijan, Iran

2 Department of Mathematics, North Tehran branch, Islamic Azad University, Tehran, Iran

3 Department of Applied Mathematics, Islamic Azad University, Rasht, Iran

Abstract

Data Envelopment Analysis (DEA) is a broad range of mathematical models for measuring the relative efficiency of a set of homogeneous decision units with similar inputs and outputs. Multiple models of data envelopment analysis render a set of weights for input and output variables of each decision unit to calculate the relative efficiency of those units based on them. The calculation of different weights for the same indices in a set of homogeneous decision units is not realistic. Therefore, the Common Set of Weights (CSW) method was used to solve this problem and the Bootstrap method was used to determine which common set of weights would minimize the number of efficient units. The rank of a unit can provide useful information to decision-makers on the optimal activities of decision units. The priority order of units defines the superiority of a unit in terms of efficiency and effectiveness over others. Calculating unit efficiency for data envelopment analysis models can be a good criterion for ranking one unit. However, the main problem arises when several efficient units all rank first. This study aimed at proposing a model for ranking efficient units using the Bootstrap method to determine the common set of weights in data envelopment analysis by finding a possible confidence interval for the weights using the Bootstrap method. This led to the estimation of a set of possible common weights for the data envelopment analysis. Efficient units were then identified and ranked based on these weights..

Keywords


Article Title [فارسی]

روش بوت‌استرپ و مجموعه وزن‌های مشترک در تحلیل‌پوششی‌داده‌ها برای افتراق واحد‌های کارا

Authors [فارسی]

  • اکبر امیری 1
  • صابر ساعتی مهتدی 2
  • علیرضا امیرتیموری 3
1 گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
2 گروه ریاضی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران
3 گروه ریاضی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران
Abstract [فارسی]

تحلیل‌پوششی‌داده‌ها (DEA) دامنه‌ی گسترده‌ای از مدل‌های ریاضی برای سنجش کارایی نسبی مجموعه‌ای از واحدهای تصمیم‌گیری متجانس با ورودی و خروجی مشابه است. مدل‌های مضربی تحلیل پوششی داده‌ها، مجموعه‌ای از وزن‌ها را برای متغیرهای ورودی و خروجی هر واحد تصمیم‌گیری به دست می‌آورد و بر اساس آن کارایی نسبی هر واحد تصمیم‌گیری را محاسبه می‌کند. محاسبه وزن‌های مختلف برای شاخص‌های یکسان در مجموعه‌ای از واحدهای تصمیم‌گیری متجانس، واقع‌بینانه نیست. برای رفع این مشکل از روش مجموعه وزن‌های مشترک (CSW) استفاده‌شده است. برای به حداقل رساندن واحد‌های کارا از روش بوت‌استرپ برای تعیین مجموعه وزن‌های مشترک استفاده می‌شود. رتبه یک واحد می‌تواند اطلاعات سودمندی درزمینه فعالیت‌های بهینه واحدهای تصمیم‌گیری در اختیار تصمیم‌گیرنده قرار دهد. اینکه کدام واحد بر واحد دیگر اولویت دارد، این مفهوم برتری یک واحد را ازنظر کارایی و اثربخشی بر واحدهای دیگر مشخص می‌کند. محاسبه کارایی واحدها برای مدل‌های تحلیل‌پوششی‌داده‌ها می‌تواند ملاک مناسبی برای رتبه‌بندی یک واحد باشد؛ اما مشکل اصلی زمانی است که چند واحد کارا همگی رتبه یک را لحاظ می‌کنند. هدف از این پژوهش، ارائه مدلی جهت رتبه‌بندی واحدهای کارا با استفاده از روش بوت‌استرپ برای تعیین مجموعه وزن‌های مشترک در تحلیل پوششی داده‌ها است. تعیین مجموعه وزن-های مشترک از طریق یافتن یک بازه اطمینان احتمالی برای وزن‌ها به کمک بوت‌استرپ است که برآورد آن‌ها می‌تواند یک مجموعه وزن‌های مشترک احتمالی برای تحلیل‌پوششی‌داده‌ها به دست آورد و با توجه به آن واحدهای کارا از هم افتراق و رتبه‌بندی بین آن‌ها انجام می‌شود.

Keywords [فارسی]

  • تحلیل‌پوششی‌داده‌ها
  • مجموعه وزن‌های مشترک
  • بوت‌استرپ
  • رتبه‌بندی
عبادی سعید. روشی برای رتبه‌بندی   نمرات کارایی با استفاده از بوت­استرپ. تحقیق در عملیات و کاربردهای آن (ریاضی کاربردی). 1390  .دوره8 ، شماره2.
[2] Farrell, M.J., The measurement of productive efficiency. Journal of the Royal Statistical Society Series a-General, 1957. 120(3): p. 253-290.
[3] Charnes, A., W.W. Cooper, and E. Rhodes, Measuring the efficiency of decision making units. European journal of operational research, 1978. 2(6): p. 429-444.
[4] Roll, Y., W.D. Cook, and B. Golany, Controlling factor weights in data envelopment analysis. IIE Transactions, 1991. 23(1): p. 2-9.
[5]  Liu, F.-H.F. and H.H. Peng, Ranking of units on the DEA frontier with common weights. Computers & Operations Research, 2008. 35(5): p. 1624-1637.
[6] Hashimoto, A. and D.-A. Wu, A DEA- compromise programming model for comprehensive ranking. Journal of the Operations Research Society of Japan, 2004. 47(2): p. 73-81.
[7] Kao, C. and H.-T. Hung, Data envelopment analysis with common weights: the compromise solution approach. Journal of the Operational Research Society, 2005. 56(10): p. 1196-1203.
[8]  Wang, Y.-M., Y. Luo, and Y.-X. Lan, Common weights for fully ranking decision making units by regression analysis. Expert Systems with Applications, 2011. 38(8): p. 9122-9128.
[9]  Jahanshahloo, G. R.; Memariani, A.; Lotfi, F. Hosseinzadeh; Rezai, H. Z. A note on some of DEA models and finding efficiency and complete ranking using common set of weights. Applied mathematics and computation, 2005. 166(2): p. 265-281.
[10] Saati, S., et al., A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012. 8(3): p. 623-637.
[11] Omrani, H., Common weights envelopment analysis with uncertain data: A robust optimization approach. Computers & Industrial Engineering, 2013. 66(4): p. 1163-1170.
[12] Zohrehbandian, M., A. Makui, and A. Alinezhad, A compromise solution approach for finding common weights in DEA: An improvement to Kao and Hung's approach. Journal of the Operational Research Society, 2010. 61(4): p. 604-610.
[13] Bertsimas, D. and M. Sim, The price of robustness. Operations research, 2004. 52(1): p. 35-53.
[14] Saati, S., Determining a common set of weights in DEA by solving a linear programming, in Journal of industrial engineering international. 2008. p. 51-56.
[15]  Saati, S. and N. Nayebi, An algorithm for determining common weights by concept of membership function. Journal of Linear and Topological Algebra (JLTA), 2015. 4(03): p. 165-172.
[16] Payan, A., A.A. Noora, and F.H. Lotfi, A Ranking Method Based on Common Weights and Benchmark Point. Applications & Applied Mathematics, 2014. 9(1).
[17] Efron, B., Computers and the theory of statistics: thinking the unthinkable. SIAM review, 1979. 21(4): p. 460-480.
[18]   Efron, B. and R.J. Tibshirani, An Introduction to the Bootstrap, volume 57 of. Monographs on Statistics and applied probability, 1993: p. 17.
[19] Simar, L., Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-parametric and semi-parametric methods with bootstrapping, in International Applications of Productivity and Efficiency Analysis. 1992, Springer. p. 167-199.
[20] Ferrier, G.D. and J.G. Hirschberg, Bootstrapping confidence intervals for linear programming efficiency scores: With an illustration using Italian banking data. Journal of Productivity Analysis, 1997. 8(1): p. 19-33.
[21] Simar, L. and P.W. Wilson, Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Management science, 1998. 44(1): p. 49-61.
[22] Simar, L. and P.W. Wilson, A general methodology for bootstrapping in non-parametric frontier models. Journal of Applied Statistics, 2000. 27(6): p. 779-802.
[23]  Simar, L., & Wilson, P. W. (2002). Non-parametric tests of returns to scale. European Journal of Operational Research, 139(1), 115-132.
[24] Hall,  P. (1986), On the number of bootstrap simulations required to construct a confidence interval. The Annals of Statistics 14: 1453–1462.
[25]  Andrews, D. W., & Buchinsky, M. (2002). On the number of bootstrap repetitions for BCa confidence intervals. Econometric Theory, 962-984.
[26] Tsolas, I. E, Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA. Resources Policy, 2011. 36(2): p. 159-167.
[27] Curi, C., S. Gitto, & P. Mancuso, New evidence on the efficiency of Italian airports: A bootstrapped DEA analysis. Socio-Economic Planning Sciences, 2011. 45(2): p. 84-93.
[28] Kim, C., S.W. Kim, and H.J. Kang, Driving Sustainable Competitive Advantage in the Mobile Industry: Evidence from US Wireless Carriers. Sustainability, 2016. 8(7): p. 659.
[29] Li, Y, Analyzing efficiencies of city commercial banks in China: An application of the bootstrapped DEA approach. Pacific-Basin Finance Journal, 2020. 101372.
 [30] Charnes, A. and W.W. Cooper, Programming with linear fractional functionals. Naval Research logistics quarterly, 1962. 9(3‐4): p. 181-186.
[31] Golany, B. and G. Yu, A goal programming- discriminant function approach to the estimation of an empirical production function based on DEA results. Journal of Productivity Analysis, 1995. 6(2): p. 171-186.