عبادی سعید. روشی برای رتبهبندی نمرات کارایی با استفاده از بوتاسترپ. تحقیق در عملیات و کاربردهای آن (ریاضی کاربردی). 1390 .دوره8 ، شماره2.
[2] Farrell, M.J., The measurement of productive efficiency. Journal of the Royal Statistical Society Series a-General, 1957. 120(3): p. 253-290.
[3] Charnes, A., W.W. Cooper, and E. Rhodes, Measuring the efficiency of decision making units. European journal of operational research, 1978. 2(6): p. 429-444.
[4] Roll, Y., W.D. Cook, and B. Golany, Controlling factor weights in data envelopment analysis. IIE Transactions, 1991. 23(1): p. 2-9.
[5] Liu, F.-H.F. and H.H. Peng, Ranking of units on the DEA frontier with common weights. Computers & Operations Research, 2008. 35(5): p. 1624-1637.
[6] Hashimoto, A. and D.-A. Wu, A DEA- compromise programming model for comprehensive ranking. Journal of the Operations Research Society of Japan, 2004. 47(2): p. 73-81.
[7] Kao, C. and H.-T. Hung, Data envelopment analysis with common weights: the compromise solution approach. Journal of the Operational Research Society, 2005. 56(10): p. 1196-1203.
[8] Wang, Y.-M., Y. Luo, and Y.-X. Lan, Common weights for fully ranking decision making units by regression analysis. Expert Systems with Applications, 2011. 38(8): p. 9122-9128.
[9] Jahanshahloo, G. R.; Memariani, A.; Lotfi, F. Hosseinzadeh; Rezai, H. Z. A note on some of DEA models and finding efficiency and complete ranking using common set of weights. Applied mathematics and computation, 2005. 166(2): p. 265-281.
[10] Saati, S., et al., A common set of weight approach using an ideal decision making unit in data envelopment analysis. Journal of Industrial and Management Optimization, 2012. 8(3): p. 623-637.
[11] Omrani, H., Common weights envelopment analysis with uncertain data: A robust optimization approach. Computers & Industrial Engineering, 2013. 66(4): p. 1163-1170.
[12] Zohrehbandian, M., A. Makui, and A. Alinezhad, A compromise solution approach for finding common weights in DEA: An improvement to Kao and Hung's approach. Journal of the Operational Research Society, 2010. 61(4): p. 604-610.
[13] Bertsimas, D. and M. Sim, The price of robustness. Operations research, 2004. 52(1): p. 35-53.
[14] Saati, S., Determining a common set of weights in DEA by solving a linear programming, in Journal of industrial engineering international. 2008. p. 51-56.
[15] Saati, S. and N. Nayebi, An algorithm for determining common weights by concept of membership function. Journal of Linear and Topological Algebra (JLTA), 2015. 4(03): p. 165-172.
[16] Payan, A., A.A. Noora, and F.H. Lotfi, A Ranking Method Based on Common Weights and Benchmark Point. Applications & Applied Mathematics, 2014. 9(1).
[17] Efron, B., Computers and the theory of statistics: thinking the unthinkable. SIAM review, 1979. 21(4): p. 460-480.
[18] Efron, B. and R.J. Tibshirani, An Introduction to the Bootstrap, volume 57 of. Monographs on Statistics and applied probability, 1993: p. 17.
[19] Simar, L., Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-parametric and semi-parametric methods with bootstrapping, in International Applications of Productivity and Efficiency Analysis. 1992, Springer. p. 167-199.
[20] Ferrier, G.D. and J.G. Hirschberg, Bootstrapping confidence intervals for linear programming efficiency scores: With an illustration using Italian banking data. Journal of Productivity Analysis, 1997. 8(1): p. 19-33.
[21] Simar, L. and P.W. Wilson, Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Management science, 1998. 44(1): p. 49-61.
[22] Simar, L. and P.W. Wilson, A general methodology for bootstrapping in non-parametric frontier models. Journal of Applied Statistics, 2000. 27(6): p. 779-802.
[23] Simar, L., & Wilson, P. W. (2002). Non-parametric tests of returns to scale. European Journal of Operational Research, 139(1), 115-132.
[24] Hall, P. (1986), On the number of bootstrap simulations required to construct a confidence interval. The Annals of Statistics 14: 1453–1462.
[25] Andrews, D. W., & Buchinsky, M. (2002). On the number of bootstrap repetitions for BCa confidence intervals. Econometric Theory, 962-984.
[26] Tsolas, I. E, Performance assessment of mining operations using nonparametric production analysis: A bootstrapping approach in DEA. Resources Policy, 2011. 36(2): p. 159-167.
[27] Curi, C., S. Gitto, & P. Mancuso, New evidence on the efficiency of Italian airports: A bootstrapped DEA analysis. Socio-Economic Planning Sciences, 2011. 45(2): p. 84-93.
[28] Kim, C., S.W. Kim, and H.J. Kang, Driving Sustainable Competitive Advantage in the Mobile Industry: Evidence from US Wireless Carriers. Sustainability, 2016. 8(7): p. 659.
[29] Li, Y, Analyzing efficiencies of city commercial banks in China: An application of the bootstrapped DEA approach. Pacific-Basin Finance Journal, 2020. 101372.
[30] Charnes, A. and W.W. Cooper, Programming with linear fractional functionals. Naval Research logistics quarterly, 1962. 9(3‐4): p. 181-186.
[31] Golany, B. and G. Yu, A goal programming- discriminant function approach to the estimation of an empirical production function based on DEA results. Journal of Productivity Analysis, 1995. 6(2): p. 171-186.