A Recurrent Neural Network to Identify Efficient Decision Making Units in Data Envelopment Analysis

Document Type: research paper

Authors

1 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Mathematics, Science and Research Branch, Islamic Azad University, Corresponding author

Abstract

In this paper we present a recurrent neural network model to recognize efficient Decision Making Units(DMUs) in Data Envelopment Analysis(DEA). The proposed neural network model is derived from an unconstrained minimization problem. In theoretical aspect, it is shown that the proposed neural network is stable in the sense of lyapunov and globally convergent. The proposed model has a single-layer structure. Simulation shows that the proposed model is effective to identify efficient DMUs in DEA.

Keywords


Article Title [Persian]

یک شبکه عصبی بازگشتی برای تشخیص واحدهای تصمیم گیرنده کارا در تحلیل پوششی داده ها

Authors [Persian]

  • عباس قماشی 1
  • غلامرضا جهانشاهلو 1
  • فرهاد حسین زاده لطفی 2
1 گروه ریاضی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
2 گروه ریاضی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران
Abstract [Persian]

در این مقاله ما یک مدل شبکه عصبی برای تشخیص واحدهای تصمیم­گیرنده کارا در تحلیل پوششی داده­ها معرفی می­کنیم.
مدل شبکه عصبی پیشنهادی از یک مسئله بهینه­سازی نامقید حاصل می­شود. از دیدگاه تئوری نشان داده می­شود شبکه عصبی پیشنهادی دارای پایداری لیاپانف و همگرای سراسری می­باشد. مدل پیشنهادی تک لایه  می­باشد. شبیه­سازی نشان می­دهد مدل پیشنهادی قادر به تشخیص واحدهای کارا در تحلیل پوششی داده­ها می­باشد.
 

Keywords [Persian]

  • شبکه عصبی بازگشتی- روش گرادیان- تحلیل پوششی داده‌ها- واحد کارا- پایداری- همگرایی عمومی

[1] Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.

[2] Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: theory and algorithms. John Wiley & Sons.

[3] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.

[4] Cochocki, A., & Unbehauen, R. (1993). Neural networks for optimization and signal processing. John Wiley & Sons, Inc..

[5] Cooper, W. W., Seiford, L. M., & Tone, K. (2006). Introduction to data envelopment analysis and its uses: with DEA-solver software and references. Springer Science & Business Media.

[6] Kinderlehrer, D., & Stampacchia, G. (1980). An introduction to variational inequalities and their applications (Vol. 31). Siam.

[7] Xia, Y., & Wang, J. (1998). A general methodology for designing globally convergent optimization neural networks. Neural Networks, IEEE Transactions on, 9(6), 1331-1343.

[8] Xia, Y., & Wang, J. (2000). A recurrent neural network for solving linear projection equations. Neural Networks, 13(3), 337-350.

[9] Xia, Y., Leung, H., & Wang, J. (2002). A projection neural network and its application to constrained optimization problems. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 49(4), 447-458.

[10] Zabczyk, J. (2009). Mathematical control theory: an introduction. Springer Science & Business Media.