Numerical Solution of fuzzy differential equations of nth-order by Adams-Bashforth method

Document Type: research paper

Author

Department of Mathematics, Faculty of Sciences, Kermanshah Azad University, Kermanshah, Iran.

Abstract

So far, many methods have been presented to solve the rst-order di erential equations. But, not many studies have been conducted for numerical solution of high-order fuzzy di erential equations. In this research, First, the equation by reducing time, we transform the rst-order equation. Then we have applied Adams-Bashforth multi-step methods for the initial approximation of one order di erential equations. Finally, we examine the accuracy of method by presenting examples.

Keywords


Article Title [Persian]

حل عددی معادلات دیفرانسیل فازی مرتبه n با استفاده از روش آدامز- بشفورث

Author [Persian]

  • نورالدین پرندین
گروه ریاضی, دانشکده علوم, دانشگاه آزاد کرمانشاه, کرمانشاه, ایران.
Abstract [Persian]

در این مقاله، روشی عددی برای حل معادلات دیفرانسیل مرتبه  پیشنهاد شده است. تاکنون روش­های زیادی برای حل معادلات دیفرانسیل فازی مرتبه اول، توسط محققین ارائه شده است. اما روش­های عددی کمتری نسبت به روش­های مرتبه اول، برای حل معادلات دیفرانسیل فازی مرتبه بالا پیشنهاد شده است. در این تحقیق، ابتداء معادله دیفرانسیل مرتبه n به دستگاهی از معادلات دیفرانسیل فازی مرتبه اول تبدیل می­شود، سپس از روش آدامز- بشفورث برای حل این دستگاه معادلات استفاده می­شود. نهایتاً با ارائه مثال­هایی، دقت روش سنجیده می­شود.

Keywords [Persian]

  • معادلات دیفرانسیل فازی
  • روش آدامز- بشفورث
[1] S. Abbasbandy and T. Allahviranloo, Numerical solution of fuzzy differential equation by Runge-Kutta method, J. Sci. Teacher Training University,1(3), 2002.

[2] S. Abbasbandy and T. Allahviranloo, Numerical solutions of fuzzy differential equations by Taylor method, Journal of Computational Methods in Applied Mathematics, 2 (2002), 113-124.

[3] S. Abbasbandy, T. Allahviranloo, O. Lopez-Pouso, and J. J. Nieto, Numerical methods for fuzzy differential inclusions, Journal of Computer and Mathematics with Applications, 48 (2004), 1633-1641.

[4] T. Allahviranloo, N. Ahmady, and E. Ahmady, Numerical solution of fuzzy differential equations by predictor-corrector method, Information Sciences, 177 (2007), 1633-1647.

[5] T. Allahviranloo, E. Ahmady, and N. Ahmady, Nth-order fuzzy linear differential equations, Information Sciences, 178 (2008), 1309-1324.

[6] T. Allahviranloo, N. A. Kiani, and N. Motamedi, Solving fuzzy differential equations by differential transformation method, Information Sciences, 179 (2009), 956-966.

[7] M. Barkhordari Ahmadi, N. A. Kiani, N. Mikaeilvand, Extended  predictor-corrector methods for solving fuzzy differential equations under generalized differentiability, International  Journal  of  Mathematical  Modeling and  Computations, 5(2015), 149-171

 [8] B. Bede, A note on two-point boundary value problems associated with non-linear fuzzy differential equations, Fuzzy Sets and Systems, 157(2006), 986-989.

[9] B. Bede and S. G. Gal, Generalizations of the differntiability of fuzzy number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599.

[10] J. J. Buckley and T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems, 110 (2000), 43-54.

[11] C.J. Budd, A. Iserles, Geometric integration: numerical solution of differential equations on manifolds, philosophical transactions: mathematical, Physical and Engineering Sciences: Mathematical 357 (1999) 945–956.

[12] J. Behlke, O. Ristau, A new approximate whole boundary solution of the Lamm differential equation for the analysis of sedimentation velocity experiments, Biophysical Chemistry 95 (2002) 59–68.

[13] R.L. Burden, J.D. Faires, Numerical Analysis.

[14] G.A. Bocharov, F.A. Rihan, Numerical modelling in biosciences using delay differential equations, Journal of Computational and Applied Mathematics 125 (2000) 183–199.

[15] R.V. Culshaw, S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Mathematical Biosciences 165 (2000) 27–39.

[16] P. Diamond, Stability and periodicity in fuzzy differential equations, IEEE Trans, Fuzzy Systems, 8 (2000), 583-590.

[17] P. Diamond, Brief note on the variation of constants formula for fuzzy differential equations, Fuzzy Sets and Systems, 129 (2002), 65-71.

[18] Ming Ma, M. Friedman, and A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Sets and Systems, 105 (1999), 133-138.

 

[19] M. Friedman, M.Ming, and A. Kandel, Numerical solutions of fuzzy differential and integral equations, Fuzzy Sets and Systems, 106 (1999), 35-48.

[20] B. Ghazanfari and A. Shakerami, Numerical solution of fuzzy differential equations by extended Runge-Kutta-like formulae of order 4, Fuzzy Sets and Systems, 189 (2011), 74-91.

 

[21] D. N. Georgiou, J. J. Nieto, and R. Rodriguez-Lopez, Initial value problems for higher-order fuzzy differential equations, Nonlinear Anal., 63

(2005), 587-600.

 

[22] H. Gang, H. Kaifen, Controlling chaos in systems described by partial differential equations, Phys. Rev. Lett. 71 (1993) 3794–3797.

 

[23] A.R. Its, A.G. Izergin, V.E. Korepin, N.A. Slavnov, Differential equations for quantum correlation functions, International Journal of Modern Physics B 4 (1990) 1003–1037.

 

[24] A.V. Kotikov, Differential equations method: the calculation of vertex-type Feynman diagrams, Physics Letters B 259 (1991) 314–322.

 

 [25] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24

(1987), 301-317.

 

[26] O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35 (1990), 389-396.

 

[27] A. Khastan and K. Ivaz, Numerical solution of fuzzy differential equations by Nystrom method. Chaos, Solitons and Fractals, 41 (2009), 859-868.

 

[28] H. Kim and R. Sakthivel, Numerical solution of hybrid fuzzy differential equations using improved predictor-corrector method, Commun Nonlinear Sci Numer Simulat, 17 (2012), 3788-3794.

 

 

 

[29] M. Mosleh and M. Otadi, Simulation and evalution of fuzzy differential equations by fuzzy neural network, Applied Soft Computing, 12 (2012), 2817-2827.

 

[30] J. J. Nieto and R. Rodriguez-Lopez, Bounded solutions for fuzzy differential and integral equations, Chaos, Solitons and Fractals, 27 (2006), 1376-1386.

 

[31] J. J. Nieto, The Cauchy problem for continuous fuzzy differential equations, Fuzzy Sets and Systems, 102 (1999), 259-262.

 

[32] R. Norberg, Differential equations for moments of present values in life insurance, Insurance: Mathematics and Economics 17 (1995) 171–180.

 

[33] H. Ouyang and Y. Wu, On fuzzy differential equations, Fuzzy Sets and Systems, 32 (1989), 321-325.

 

[34] S. Ch. Palligkinis, G. Papageorgiou, and I. Th. Famelis, Runge-Kutta methods for fuzzy differential equations, Applied Mathematics and Computation, 209 (2009), 97-105.

 

[35] S. Pederson and M. Sambandham, The Runge-Kutta method for hybrid fuzzy differential equations, Nonlinear Analysis: Hybrid Systems, 2 (2008), 626-634.

 

[36] Y.Z. Peng, Exact solutions for some nonlinear partial differential equations, Physics Letters A 314 (2003) 401–408.

 

[37] H. Roman-Flores and M. Rojas-Medar, Embedding of level-continuous fuzzy sets on Banach spaces, Information Sciences, 144 (2002), 227-247.

 

[38] S. Sekar, A. Sakthivel, Numerical investigation of the n-th order fuzzy differential equations using he’s homotopy perturbation method, International Journal of Pure and Applied Mathematics, 116(2017) , 899-911.

 

[39] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems, 24 (1987), 319-330.

 

[40] U. Salzner, P. Otto, J. Ladik, Numerical solution of a partial differential equation system describing chemical kinetics and diffusion in a cell with the aid of compartmentalization, Journal of Computational Chemistry 11 (1990) 194–204.

 

[41] J.G. Verwer, J.G. Blom, M. van Loon, E.J. Spee, A comparison of stiff ODE solvers for atmospheric chemistry problems, Atmospheric Environment 30 (1996) 49–58.