On minimal degrees of faithful quasi-permutation representations of nilpotent groups

Document Type: research paper

Author

Islamic Azad University-Khoy Branch

Abstract

By a quasi-permutation matrix, we mean a square non-singular matrix over the complex field with non-negative integral trace....

Keywords


Article Title [Persian]

کوچکترین درجات نمایش‌های شبه‌جایگشتی یک‌به‌یک گروه‌های پوچ‌توان

Author [Persian]

  • مهدی غفارزاده
عضو هیات علمی-دانشگاه آزاد اسلامی واحد خوی
Abstract [Persian]

ماتریس شبه­جایگشتی، ماتریسی نامنفرد روی میدان مختلط است که دارای اثر صحیح نامنفی باشد. ...

Keywords [Persian]

  • نمایش شبه‌جایگشتی
  • گروه پوچتوان
  • سرشت تحویل‌ناپذیر
  • اندیس شور
  • حاصل‌ضرب مستقیم گروه‌ها

 

[1] Behravesh, H. (1997). The minimal degree of a faithful quasi–permutation representation of an abelian group. Glasgow Mathematical Journal, 39, 51-57.

 

[2] Behravesh, H. (1997). Quasi–permutation representations of -groups of class . Journal of London Mathematical Society, 55 (2), 251-260.

 

[3] Behravesh, H., & Ghaffarzadeh, G. (2011). Minimal degree of faithful quasi–permutation representations of -groups. Algebra Colloquium, 18 (Spec1), 843-846.

 

[4] Burns, J. M., & Goldsmith, B., & Hartley, B., & Sandling, R. (1994). On quasi–permutation representations of finite groups. Glasgow Mathematical Journal, 36, 301-308.

 

[5] Easdown, D., & Praeger, C. E. (1988). On minimal faithful permutation representations of finite groups. Bulletin of the Australian Mathematical Society, 38(2), 207–220.

 

[6] Ghaffarzadeh, G., & Abbaspour, M. H. (2012). Minimal degrees of faithful quasi–permutation representations for direct product of -groups. Proceedings–Mathematical Sciences, 122(3), 329-334.

 

[7] Isaacs, I. M. (1994). Algebra: A Graduate Course. Brocks/Cole Publishing.  Pacific Grove, CA.

 

[8] Isaacs, I. M. (2006). Character Theory of Finite Groups. AMS Chelsea Publishing. RI, Providence.

 

[9] Johnson, D. L. (1971). Minimal permutation representations of finite groups, American Journal of Mathematics, 93(4). 857-866.

 

[10] Roman, S. (2006). Field Theory. Springer-Verlag,  New York.

 

[11] Rose, J. S. (1978). A Course on Group Theory. Cambridge University Press.

 

[12] Wong, W. J. (1963). Linear groups analogous to permutation groups. Journal of the Australian Mathematical Society, 3(2), 180-184.

 

[13] Wong, W. J. (1964). On linear -groups, Journal of the Australian Mathematical Society, 4(2), 174-178.

 

[14] Wright, D. (1975). Degrees of minimal embeddings for some direct Products. American Journal of Mathematics, 97(4), 897-903.