The Existance of the Optimum Solution for the System of Differential Equation in Hilbert Space

Document Type: research paper

Author

Department of Mathematical Sciences, University of Kashan, Ravand Road, Kashan, Iran

Abstract

In this paper, we study the existence of the following optimum solution for the system of differential equation ...

Keywords


Article Title [Persian]

وجود جواب بهینه برای دستگاه معادلات دیفرانسیل در فضای هیلبرت

Author [Persian]

  • زینب سلطانی
گروه ریاضی محض، دانشکده علوم ریاضی، دانشگاه کاشان، کاشان، ایران
Abstract [Persian]

 
در این مقاله وجود جواب بهینه برای دستگاه معادلات دیفرانسیل زیر را بررسی می‌کنیم ...
 
 

Keywords [Persian]

  • دستگاه معادلات دیفرانسیل
  • دستگاه تکامل انقباضی
  • نقاط بهترین تقریب
  • فضای هیلبرت

 

[1] A. Abkar, M. Gabeleh, Best proximity points for asymptotic cyclic contraction mappings, Nonlinear Anal, 74 (2011), no. 18, 7261-7268.

 

[2] A. Abkar, M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theory Appl, 151 (2011), 418-424.

 

[3] A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal, 70 (2009), 3665-3671.

 

[4] C. Di Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic Meir--Keeler contractions, Nonlinear Anal, 69 (2008), 3790-3794.

 

[5] M. Derafshpour, S. Rezapour, and N. Shahzad, Best proximity points of cyclic-contractions in ordered metric spaces, Topological Methods in Nonlinear Analysis, 37 (2011), 193-202.

 

[6] A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl, 323 (2006), 1001-1006.

 

[7] R. Espinola, A. Fernandez-Leon, On best proximity points in metric and Banach spaces, Canad. J. Math, 63 (2011), no. 3, 533-550.

 

[8] A. Fernandez-Len, Existence and uniqueness of best proximity points in geodesic metric spaces, Nonlinear Anal, 73 (2010), no. 4, 915-921.

 

[9] M. Kamenskii, V. Obukhovskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, De Gruyter Series in Nonlinear Analysis and Applications. 7, Walter de Gruyter Co., Berlin, 2001.

 

[10] S. Karpagam, S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory and Applications, 70 (2009), 3332-3341.

 

[11] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89.

 

[12] B. Piatek, On cyclic Meir-Keeler contractions in metric spaces, Nonlinear Anal, 74 (2011), no. 1, 35-40.

 

[13] T. Suzuki, M. Kikkawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal, 71 (2009), 2918-2926.

 

[14] P. Veeramani, S. Rajesh, Best Proximity Points. in Q. H. Ansari, Qamrul Hasan Ansari Nonlinear Analysis, Approximation Theory, Optimization and Applications (1-32). Springer New Delhi Heidelberg New York Dordrecht London. 2014.

 

[15] C. Vetro, Best proximity points: convergence and existence theorems for p-cyclic mappings, Nonlinear Anal, 73 (2010), no. 7, 2283-2292.