Best proximity point theorems in Hadamard spaces using relatively asymptotic center

Document Type: research paper

Author

Department of Mathematics, Ayatollah Boroujerdi University, Boroujerd, Iran.

Abstract

In this article we survey the existence of best proximity points for a class of non-self mappings which‎ satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [‎A‎. ‎Abkar‎, ‎M‎. ‎Gabeleh‎, Best proximity points of non-self mappings‎, ‎Top‎, ‎21, (2013)‎, ‎287-295]‎ which guarantees the existence of best proximity points for nonexpansive non-self mappings in the setting of uniformly convex Banach spaces.
We also introduce a new notion, ‎ called relatively asymptotic center, on a nonempty, bounded,‎ closed ‎and ‎convex ‎pair ‎of ‎subsets ‎of a‎ ‎Hadamard‎ ‎metric space and ‎as a result of our main conclusions, we will show that the asymptotic center of any sequence in a nonempty, bounded, closed and convex subset of a Hadamard space is singleton. Moreover, we obtain the other existence results of best proximity points for generalized nonexpansive mappings using the appropriate geometric properties of Hadamard spaces. Finally, we provide some examples to illustrate our main results.

Keywords


Article Title [Persian]

مساله بهترین نقاط تقریب در فضاهای هادامارد با استفاده از مفهوم مرکز مجانبی نسبی

Author [Persian]

  • موسی گابله
گروه ریاضی، دانشگاه آیت‌ا...العظمی بروجردی، بروجرد، ایران
Abstract [Persian]

در این مقاله مساله وجود بهترین نقاط تقریب برای رده­ای از غیر خودنگاشت­ها که در شرایط غیرانبساطی خاصی صدق
می­کنند مورد مطالعه قرار می­گیرد. بر این اساس یک نتیجه اصلی مربوط به مرجع [1] که بیان­گر وجود بهترین نقطه تقریب برای غیر خود نگاشت­های غیرانبساطی در فضاهای باناخ به­طور یکنواخت محدب می­باشد، بهبود و توسیع داده خواهد شد. همچنین مفهوم جدیدی تحت عنوان مرکز مجانبی نسبی برای یک زوج غیرتهی از مجموعه­های بسته، کراندار و محدب در فضاهای متریک هادامار معرفی شده و به‌عنوان یک نتیجه از بحث اصلی خواهیم دید که مرکز مجانبی هر دنباله در یک زیرمجموعه ناتهی، بسته، کراندار و محدب از یک فضای هادامارد دقیقاً شامل یک نقطه می­باشد. در ضمن با استفاده از ویژگی­های هندسی مناسب موجود بر فضاهای هادامارد، نتایج وجودی دیگری در باب بهترین نقاط تقریب برای نگاشت­های غیرانبساطی تعمیم یافته حاصل خواهد شد. در نهایت تلاش می­شود که با ارائه چند مثال کاربردی به تبیین نتایج بدست آمده، بپردازیم.

Keywords [Persian]

  • بهترین نقاط تقریب
  • مرکز مجانبی نسبی
  • فضای متریک هادامارد
  • غیر خودنگاشت غیر انبساطی